Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.061
Filtrar
1.
Microb Cell Fact ; 22(1): 36, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36823519

RESUMO

BACKGROUND: Cyanobacteria are prokaryotic organisms with wide morphological and metabolic diversity. By means of photosynthesis, they convert inorganic compounds into biomolecules, which may have commercial interest. In this work, we evaluated 20 cyanobacterial strains regarding their physiological aspects such as growth, photosynthesis and biochemical composition, some of which are revealed here for the first time. The organisms were cultivated in cylindrical photobioreactors (CPBR) for 144 h and the biomass was obtained. The light inside cultures was constant throughout experimental time and maintained at the saturation irradiance (Ik) of each species. Culture pH was maintained within 7.8 and 8.4 by automatic CO2 bubbling. Growth rate, dry biomass, chlorophyll a, carotenoids, phycocyanin, proteins, carbohydrates, lipids, polyhydroxyalkanoate (PHA) and antioxidant activity were determined. RESULTS: The proportionality of the biochemical composition varied among species, as well as the growth rates. Leptolyngbya sp. and Nostoc sp. (CCIBt3249) showed growth rates in the range of 0.7-0.8 d-1, followed by Rhabdorderma sp. (~ 0.6 d-1), and Phormidium sp. (~ 0.5 d-1). High carotenoid content was obtained in Rhabdoderma sp. (4.0 µg mL-1) and phycocyanin in Leptolyngbya sp. (60 µg mL-1). Higher total proteins were found in the genus Geitlerinema (75% DW), carbohydrates in Microcystis navacekii (30% DW) and lipids in Phormidium sp. (15% DW). Furthermore, Aphanocapsa holsatica showed the highest antioxidant activity (65%) and Sphaerocavum brasiliense, Microcystis aeruginosa, Nostoc sp. (CCIBt3249) and A. holsatica higher levels of PHA (~ 2% DW). CONCLUSIONS: This study reports on the biochemical composition of cyanobacteria that can impact the biotechnology of their production, highlighting potential strains with high productivity of specific biomolecules.


Assuntos
Antioxidantes , Cianobactérias , Fotobiorreatores , Antioxidantes/metabolismo , Biomassa , Carboidratos , Carotenoides/metabolismo , Clorofila A , Lipídeos , Nostoc/metabolismo , Ficocianina , Cianobactérias/química , Cianobactérias/crescimento & desenvolvimento , Cianobactérias/metabolismo
2.
Microb Ecol ; 85(3): 892-903, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35916937

RESUMO

Soda lake environments are known to be variable and can have distinct differences according to geographical location. In this study, we investigated the effects of different environmental conditions of six adjacent soda lakes in the Pantanal biome (Mato Grosso do Sul state, Brazil) on bacterial communities and their functioning using a metagenomic approach combined with flow cytometry and chemical analyses. Ordination analysis using flow cytometry and water chemistry data from two sampling periods (wet and dry) clustered soda lakes into three different profiles: eutrophic turbid (ET), oligotrophic turbid (OT), and clear vegetated oligotrophic (CVO). Analysis of bacterial community composition and functioning corroborated this ordination; the exception was one ET lake, which was similar to one OT lake during the wet season, indicating drastic shifts between seasons. Microbial abundance and diversity increased during the dry period, along with a considerable number of limnological variables, all indicative of a strong effect of the precipitation-evaporation balance in these systems. Cyanobacteria were associated with high electric conductivity, pH, and nutrient availability, whereas Actinobacteria, Alphaproteobacteria, and Betaproteobacteria were correlated with landscape morphology variability (surface water, surface perimeter, and lake volume) and with lower salinity and pH levels. Stress response metabolism was enhanced in OT and ET lakes and underrepresented in CVO lakes. The microbiome dataset of this study can serve as a baseline for restoring impacted soda lakes. Altogether, the results of this study demonstrate the sensitivity of tropical soda lakes to climate change, as slight changes in hydrological regimes might produce drastic shifts in community diversity.


Assuntos
Cianobactérias , Lagos , Lagos/química , Lagos/microbiologia , Brasil , Eutrofização , Cianobactérias/crescimento & desenvolvimento , Cianobactérias/isolamento & purificação , Metagenômica
3.
Environ Microbiol ; 24(8): 3517-3528, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35416394

RESUMO

The composition of ecologically important moss-associated bacterial communities seems to be mainly driven by host species but may also be shaped by environmental conditions related with tree dominance. The moss phyllosphere has been studied in coniferous forests while broadleaf forests remain understudied. To determine if host species or environmental conditions defined by tree dominance drives the bacterial diversity in the moss phyllosphere, we used 16S rRNA gene amplicon sequencing to quantify changes in bacterial communities as a function of host species (Pleurozium schreberi and Ptilium crista-castrensis) and forest type (coniferous black spruce versus deciduous broadleaf trembling aspen) in eastern Canada. The overall composition of moss phyllosphere was defined by the interaction of both factors, though most of the bacterial phyla were determined by a strong effect of forest type. Bacterial α-diversity was highest in spruce forests, while there was greater turnover (ß-diversity) and higher γ-diversity in aspen forests. Unexpectedly, Cyanobacteria were much more relatively abundant in aspen than in spruce forests, with the cyanobacteria family Nostocaceae differing the most between forest types. Our results advance the understanding of moss-associated microbial communities among coniferous and broadleaf deciduous forests, which are important with the increasing changes in tree dominance in the boreal system.


Assuntos
Briófitas/microbiologia , Cianobactérias/fisiologia , Picea/fisiologia , Traqueófitas/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento , Bryopsida/microbiologia , Cianobactérias/crescimento & desenvolvimento , Florestas , Picea/crescimento & desenvolvimento , Quebeque , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética
4.
Elife ; 112022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35138247

RESUMO

The decarboxylation of pyruvate is a central reaction in the carbon metabolism of all organisms. It is catalyzed by the pyruvate:ferredoxin oxidoreductase (PFOR) and the pyruvate dehydrogenase (PDH) complex. Whereas PFOR reduces ferredoxin, the PDH complex utilizes NAD+. Anaerobes rely on PFOR, which was replaced during evolution by the PDH complex found in aerobes. Cyanobacteria possess both enzyme systems. Our data challenge the view that PFOR is exclusively utilized for fermentation. Instead, we show, that the cyanobacterial PFOR is stable in the presence of oxygen in vitro and is required for optimal photomixotrophic growth under aerobic and highly reducing conditions while the PDH complex is inactivated. We found that cells rely on a general shift from utilizing NAD(H)- to ferredoxin-dependent enzymes under these conditions. The utilization of ferredoxins instead of NAD(H) saves a greater share of the Gibbs-free energy, instead of wasting it as heat. This obviously simultaneously decelerates metabolic reactions as they operate closer to their thermodynamic equilibrium. It is common thought that during evolution, ferredoxins were replaced by NAD(P)H due to their higher stability in an oxidizing atmosphere. However, the utilization of NAD(P)H could also have been favored due to a higher competitiveness because of an accelerated metabolism.


Assuntos
Cianobactérias/crescimento & desenvolvimento , Cianobactérias/metabolismo , Piruvato Sintase/metabolismo , Catálise , Ferredoxinas/metabolismo , NAD/metabolismo
5.
Sci Rep ; 12(1): 467, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013511

RESUMO

Freshwater phytoplankton blooms are increasing in prevalence and there are conflicting views on whether trace metals limit growth of key species and thus bloom formation. The Taupo Volcanic Zone (TVZ), New Zealand, was formed by multiple eruptions of a super-volcano which emitted rhyolitic tephra leaving lakes depleted in trace metals. This provides an opportunity to test the potential of trace metal limitation on freshwater phytoplankton growth under nanomolar concentrations. Growth responses of two algal species isolated from Lake Taupo, Dolichospermum lemmermannii (cyanobacteria) and Fragilaria crotonensis (diatom), to six biologically important trace metals (manganese, iron, zinc, cobalt, copper and molybdenum) were examined in culture experiments. These were conducted at three trace metal concentrations: (1) ambient, (2) two-times ambient, and (3) ten-times ambient concentrations in Lake Taupo. Elevated concentrations of iron significantly increased growth rates and maximum cell densities in D. lemmermannii, whereas no significant concentration dependence was observed for other trace metals. Fragilaria crotonensis showed no significant growth response to elevated concentrations of trace metals. These results highlight the importance of iron as a growth limiting nutrient for cyanobacteria and indicate that even small (twofold) increases in Fe concentrations could enhance cyanobacteria growth rates in Lake Taupo, potentially causing cyanobacterial blooms.


Assuntos
Cianobactérias/crescimento & desenvolvimento , Diatomáceas/crescimento & desenvolvimento , Lagos/química , Fitoplâncton/crescimento & desenvolvimento , Oligoelementos/análise , Cianobactérias/metabolismo , Diatomáceas/metabolismo , Ferro/análise , Ferro/metabolismo , Nova Zelândia , Nutrientes/análise , Nutrientes/metabolismo , Fitoplâncton/metabolismo , Oligoelementos/metabolismo
6.
Nat Commun ; 13(1): 195, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35078994

RESUMO

In bacteria and other microorganisms, the cells within a population often show extreme phenotypic variation. Different species use different mechanisms to determine how distinct phenotypes are allocated between individuals, including coordinated, random, and genetic determination. However, it is not clear if this diversity in mechanisms is adaptive-arising because different mechanisms are favoured in different environments-or is merely the result of non-adaptive artifacts of evolution. We use theoretical models to analyse the relative advantages of the two dominant mechanisms to divide labour between reproductives and helpers in microorganisms. We show that coordinated specialisation is more likely to evolve over random specialisation in well-mixed groups when: (i) social groups are small; (ii) helping is more "essential"; and (iii) there is a low metabolic cost to coordination. We find analogous results when we allow for spatial structure with a more detailed model of cellular filaments. More generally, this work shows how diversity in the mechanisms to produce phenotypic heterogeneity could have arisen as adaptations to different environments.


Assuntos
Adaptação Fisiológica/genética , Variação Biológica da População/genética , Cianobactérias/genética , Interações Microbianas/genética , Evolução Biológica , Simulação por Computador , Cianobactérias/crescimento & desenvolvimento , Cianobactérias/metabolismo , Aptidão Genética , Modelos Genéticos , Fenótipo , Seleção Genética
7.
World J Microbiol Biotechnol ; 38(1): 7, 2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34837108

RESUMO

In anaerobic digestion of agro-industrial effluents and livestock wastes, concentrations of ammoniacal nitrogen above 800 mg L-1 are reported to lead to the eutrophication of water bodies. Through the metabolic versatility of microalgae, this nitrogen source can be used and removed, producing carotenoids, phycobiliproteins, polyhydroxyalkanoates, and fatty acids of industrial interest. The challenge of making it feasible is the toxicity of ammoniacal nitrogen to microalgae. Therefore, three strategies were evaluated. The first one was to find species of cyanobacteria with high ammoniacal nitrogen removal efficiency comparing Arthrospira platensis, Synechocystis D202, and Spirulina labyrinthiformis cultivations. The most promising species was cultivated in the second strategy, where cell acclimatization and increasing of the inoculum were evaluated. The cultivation condition that culminated in the best efficiency of ammoniacal nitrogen removal was combined with the third strategy, which consisted of conducting the fed-batch bioprocess. In the batch mode, ammoniacal nitrogen was supplied only once in one fed and was present in high initial concentrations. In fed-batch, multiple feedings with low concentrations of ammoniacal nitrogen were used to decrease the inhibitory effect of ammoniacal nitrogen. Arthrospira platensis showed high potential for ammoniacal nitrogen removal. Using the highest initial cell concentration of Arthrospira platensis cultivated by fed-batch, an increase in the consumption of NH3 to 165.1 ± 1.8 mg L-1 and an ammoniacal nitrogen removal efficiency close to 90% were observed. Under this condition, 180.52 ± 11.67 mg g-1 of phycocyanin was attained. Also, the fed-batch cultivations have the potential to reduce the biomass cost production by 33% in comparison to batch experiments.


Assuntos
Amônia/metabolismo , Cianobactérias/crescimento & desenvolvimento , Nitrogênio/metabolismo , Técnicas de Cultura Celular por Lotes , Biodegradação Ambiental , Cianobactérias/metabolismo , Ficocianina/metabolismo , Spirulina/crescimento & desenvolvimento , Spirulina/metabolismo , Synechocystis/crescimento & desenvolvimento , Synechocystis/metabolismo
8.
Microbiologyopen ; 10(5): e1243, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34713603

RESUMO

Cyanobacterial carbonate precipitation induced by cells and extracellular polymeric substances (EPS) enhances mortar durability. The percentage of cell/EPS attachment regulates the effectiveness of the mortar restoration. This study investigates the cell coverage on mortar and microbially induced carbonate precipitation. Statistical analysis of results from scanning electron and fluorescence microscopy shows that the cell coverage was higher in the presence of UV-killed cells than living cells. Cells are preferably attached to cement paste than sand grains, with a difference of one order of magnitude. The energy-dispersive X-ray spectroscopy analyses and Raman mapping suggest cyanobacteria used atmospheric CO2 to precipitate carbonates.


Assuntos
Carbonato de Cálcio/metabolismo , Dióxido de Carbono/metabolismo , Materiais de Construção/microbiologia , Cianobactérias/metabolismo , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Carbonato de Cálcio/química , Dióxido de Carbono/química , Precipitação Química , Cianobactérias/química , Cianobactérias/crescimento & desenvolvimento , Microscopia Eletrônica de Varredura
9.
Nat Commun ; 12(1): 6166, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34697313

RESUMO

Mars colonization demands technological advances to enable the return of humans to Earth. Shipping the propellant and oxygen for a return journey is not viable. Considering the gravitational and atmospheric differences between Mars and Earth, we propose bioproduction of a Mars-specific rocket propellant, 2,3-butanediol (2,3-BDO), from CO2, sunlight and water on Mars via a biotechnology-enabled in situ resource utilization (bio-ISRU) strategy. Photosynthetic cyanobacteria convert Martian CO2 into sugars that are upgraded by engineered Escherichia coli into 2,3-BDO. A state-of-the-art bio-ISRU for 2,3-BDO production uses 32% less power and requires a 2.8-fold higher payload mass than proposed chemical ISRU strategies, and generates 44 tons of excess oxygen to support colonization. Attainable, model-guided biological and materials optimizations result in an optimized bio-ISRU that uses 59% less power and has a 13% lower payload mass, while still generating 20 tons excess oxygen. Addressing the identified challenges will advance prospects for interplanetary space travel.


Assuntos
Biotecnologia , Marte , Energia Renovável , Astronave , Biomassa , Butileno Glicóis/metabolismo , Cianobactérias/crescimento & desenvolvimento , Cianobactérias/metabolismo , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Meio Ambiente Extraterreno , Humanos , Oxigênio/metabolismo , Fotossíntese , Reciclagem , Voo Espacial/instrumentação
10.
World J Microbiol Biotechnol ; 37(11): 182, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34580746

RESUMO

Microalgae offer a promising source of biofuel and a wide array of high-value biomolecules. Large-scale cultivation of microalgae at low density poses a significant challenge in terms of water management. High-density microalgae cultivation, however, can be challenging due to biochemical changes associated with growth dynamics. Therefore, there is a need for a biomarker that can predict the optimum density for high biomass cultivation. A locally isolated microalga Cyanobacterium aponinum CCC734 was grown with optimized nitrogen and phosphorus in the ratio of 12:1 for sustained high biomass productivity. To understand density-associated bottlenecks secretome dynamics were monitored at biomass densities from 0.6 ± 0.1 to 7 ± 0.1 g/L (2 to 22 OD) in batch mode. Liquid chromatography coupled with mass spectrometry identified 880 exometabolites in the supernatant of C. aponinum CCC734. The PCA analysis showed similarity between exometabolite profiles at low (4 and 8 OD) and mid (12 and 16 OD), whereas distinctly separate at high biomass concentrations (20 and 22 OD). Ten exometabolites were selected based on their role in influencing growth and are specifically present at low, mid, and high biomass concentrations. Taking cues from secretome dynamics, 5.0 ± 0.5 g/L biomass concentration (16 OD) was optimal for C. aponinum CCC734 cultivation. Further validation was performed with a semi-turbidostat mode of cultivation for 29 days with a volumetric productivity of 1.0 ± 0.2 g/L/day. The secretomes-based footprinting tool is the first comprehensive growth study of exometabolite at the molecular level at variable biomass densities. This tool may be utilized in analyzing and directing microalgal cultivation strategies and reduction in overall operating costs.


Assuntos
Cianobactérias/crescimento & desenvolvimento , Cianobactérias/metabolismo , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Secretoma/metabolismo , Biocombustíveis , Biomassa , Técnicas de Cultura de Células , Microalgas/citologia , Nitrogênio , Fósforo , Água
11.
Toxins (Basel) ; 13(8)2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34437460

RESUMO

Macroalgae can directly restrict the growth of various phytoplankton species by releasing allelopathic compounds; therefore, considerable attention should be paid to the allelopathic potential of these organisms against harmful and bloom-forming cyanobacteria. The main aim of this study was to demonstrate for the first time the allelopathic activity of Ulva intestinalis on the growth, the fluorescence parameters: the maximum PSII quantum efficiency (Fv/Fm) and the effective quantum yield of PSII photochemistry (ΦPSII), the chlorophyll a (Chl a) and carotenoid (Car) content, and the microcystin-LR (MC-LR) and phenol content of three bloom-forming cyanobacteria, Aphanizomenon sp., Nodularia spumigena, and Nostoc sp. We found both negative and positive allelopathic effects of U. intestinalis on tested cyanobacteria. The study clearly showed that the addition of the filtrate of U. intestinalis significantly inhibited growth, decreased pigment content and Fv/Fm and ΦPSII values of N. spumigena and Nostoc sp., and stimulated Aphanizomenon sp. The addition of different concentrations of aqueous extract also stimulated the cyanobacterial growth. It was also shown that the addition of extract obtained from U. intestinalis caused a significant decrease in the MC-LR content in Nostoc sp. cells. Moreover, it the phenol content in N. spumigena cells was increased. On the other hand, the cell-specific phenol content for Aphanizomenon sp. decreased due to the addition of the filtrate. In this work, we demonstrated that the allelopathic effect of U. intestinalis depends on the target species' identity as well as the type of allelopathic method used. The study of the allelopathic Baltic macroalgae may help to identify their possible role as a significant biological factor influencing harmful cyanobacterial blooms in brackish ecosystems.


Assuntos
Aphanizomenon/crescimento & desenvolvimento , Cianobactérias/efeitos dos fármacos , Cianobactérias/crescimento & desenvolvimento , Nodularia/crescimento & desenvolvimento , Nostoc/crescimento & desenvolvimento , Feromônios/toxicidade , Fotossíntese/efeitos dos fármacos , Aphanizomenon/efeitos dos fármacos , Nodularia/efeitos dos fármacos , Nostoc/efeitos dos fármacos , Fitoplâncton/efeitos dos fármacos , Fitoplâncton/crescimento & desenvolvimento , Pigmentos Biológicos , Alga Marinha/química , Ulva/química
12.
Appl Environ Microbiol ; 87(20): e0123621, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34379492

RESUMO

Biological soil crusts (biocrusts) are communities of microbes that inhabit the surface of arid soils and provide essential services to dryland ecosystems. While resistant to extreme environmental conditions, biocrusts are susceptible to anthropogenic disturbances that can deprive ecosystems of these valuable services for decades. Until recently, culture-based efforts to produce inoculum for cyanobacterial biocrust restoration in the southwestern United States focused on producing and inoculating the most abundant primary producers and biocrust pioneers, Microcoleus vaginatus and members of the family Coleofasciculaceae (also called Microcoleus steenstrupii complex). The discovery that a unique microbial community characterized by diazotrophs, known as the cyanosphere, is intimately associated with M. vaginatus suggests a symbiotic division of labor in which nutrients are traded between phototrophs and heterotrophs. To probe the potential use of such cyanosphere members in the restoration of biocrusts, we performed coinoculations of soil substrates with cyanosphere constituents. This resulted in cyanobacterial growth that was more rapid than that seen for inoculations with the cyanobacterium alone. Additionally, we found that the mere addition of beneficial heterotrophs enhanced the formation of a cohesive biocrust without the need for additional phototrophic biomass within native soils that contain trace amounts of biocrust cyanobacteria. Our findings support the hitherto-unknown role of beneficial heterotrophic bacteria in the establishment and growth of biocrusts and allow us to make recommendations concerning biocrust restoration efforts based on the presence of remnant biocrust communities in disturbed areas. Future biocrust restoration efforts should consider cyanobacteria and their beneficial heterotrophic community as inoculants. IMPORTANCE The advancement of biocrust restoration methods for cyanobacterial biocrusts has been largely achieved through trial and error. Successes and failures could not always be traced back to particular factors. The investigation and application of foundational microbial interactions existing within biocrust communities constitute a crucial step toward informed and repeatable biocrust restoration methods.


Assuntos
Cianobactérias/crescimento & desenvolvimento , Microbiologia do Solo , Clorofila A/análise , Cianobactérias/genética , Microbiota , RNA Ribossômico 16S/genética
13.
Commun Biol ; 4(1): 845, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34234272

RESUMO

The contribution of oxic methane production to greenhouse gas emissions from lakes is globally relevant, yet uncertainties remain about the levels up to which methanogenesis can counterbalance methanotrophy by leading to CH4 oversaturation in productive surface waters. Here, we explored the biogeochemical and microbial community variation patterns in a meromictic soda lake, in the East African Rift Valley (Kenya), showing an extraordinarily high concentration of methane in oxic waters (up to 156 µmol L-1). Vertical profiles of dissolved gases and their isotopic signature indicated a biogenic origin of CH4. A bloom of Oxyphotobacteria co-occurred with abundant hydrogenotrophic and acetoclastic methanogens, mostly found within suspended aggregates promoting the interactions between Bacteria, Cyanobacteria, and Archaea. Moreover, aggregate sedimentation appeared critical in connecting the lake compartments through biomass and organic matter transfer. Our findings provide insights into understanding how hydrogeochemical features of a meromictic soda lake, the origin of carbon sources, and the microbial community profiles, could promote methane oversaturation and production up to exceptionally high rates.


Assuntos
Archaea/crescimento & desenvolvimento , Cianobactérias/crescimento & desenvolvimento , Água Doce/microbiologia , Lagos/microbiologia , Metano/análise , Archaea/classificação , Archaea/genética , Biomassa , Cianobactérias/classificação , Cianobactérias/genética , Cromatografia Gasosa-Espectrometria de Massas , Geografia , Gases de Efeito Estufa/análise , Quênia , RNA Ribossômico 16S/genética
14.
J Microbiol Methods ; 186: 106256, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34082050

RESUMO

Since the removal of contaminations in microalgal cultures is extremely laborious and time-consuming, we developed a rapid workflow to obtain axenicity by a combination of fluorescence-activated cell sorting (FACS) and plate spreading. During method development, several cyanobacteria and green algae strains were successfully made axenic. At the end, method transferability to another FACS device was demonstrated. Our workflow offers great time-savings with less hands-on laboratory work compared to conventional isolation techniques.


Assuntos
Cultura Axênica/métodos , Citometria de Fluxo/métodos , Microalgas/crescimento & desenvolvimento , Cultura Axênica/instrumentação , Cianobactérias/crescimento & desenvolvimento , Cianobactérias/isolamento & purificação , Microalgas/citologia , Fluxo de Trabalho
15.
Microbiologyopen ; 10(3): e1189, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34180595

RESUMO

Aquatic ecosystems are often stratified, with cyanobacteria in oxic layers and phototrophic sulfur bacteria in anoxic zones. Changes in stratification caused by the global environmental change are an ongoing concern. Increasing understanding of how such aerobic and anaerobic microbial communities, and associated abiotic conditions, respond to multifarious environmental changes is an important endeavor in microbial ecology. Insights can come from observational and experimental studies of naturally occurring stratified aquatic ecosystems, theoretical models of ecological processes, and experimental studies of replicated microbial communities in the laboratory. Here, we demonstrate a laboratory-based approach with small, replicated, and liquid-dominated Winogradsky columns, with distinct oxic/anoxic strata in a highly replicable manner. Our objective was to apply simultaneous global change scenarios (temperature, nutrient addition) on this micro-ecosystem to report how the microbial communities (full-length 16S rRNA gene seq.) and the abiotic conditions (O2 , H2 S, TOC) of the oxic/anoxic layer responded to these environmental changes. The composition of the strongly stratified microbial communities was greatly affected by temperature and by the interaction of temperature and nutrient addition, demonstrating the need of investigating global change treatments simultaneously. Especially phototrophic sulfur bacteria dominated the water column at higher temperatures and may indicate the presence of alternative stable states. We show that the establishment of such a micro-ecosystem has the potential to test global change scenarios in stratified eutrophic limnic systems.


Assuntos
Cianobactérias/metabolismo , Sistemas Ecológicos Fechados , Nutrientes/metabolismo , Cianobactérias/crescimento & desenvolvimento , Enxofre/metabolismo , Temperatura
16.
PLoS One ; 16(6): e0253003, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34143824

RESUMO

Recently it has been show that in some ecosystems fast rates of change of environmental drivers may trigger a critical transition, whereas change of the same magnitude but at slower rates would not. So far, few studies describe this phenomenon of rate-induced tipping, while it is important to understand this phenomenon in the light of the ongoing rapid environmental change. Here, we demonstrate rate-induced tipping in a simple model of cyanobacteria with realistic parameter settings. We explain graphically that there is a range of initial conditions at which a gradual increase in environmental conditions can cause a collapse of the population, but only if the change is fast enough. In addition, we show that a pulse in the environmental conditions can cause a temporary collapse, but that is dependent on both the rate and the duration of the pulse. Furthermore, we study whether the autocorrelation of stochastic environmental conditions can influence the probability of inducing rate-tipping. As both the rate of environmental change, and autocorrelation of the environmental variability are increasing in parts of the climate, the probability for rate-induced tipping to occur is likely to increase. Our results imply that, even though the identification of rate sensitive ecosystems in the real world will be challenging, we should incorporate critical rates of change in our ecosystem assessments and management.


Assuntos
Cianobactérias/crescimento & desenvolvimento , Fitoplâncton/crescimento & desenvolvimento , Mudança Climática , Modelos Biológicos , Processos Estocásticos
17.
Braz J Microbiol ; 52(2): 773-785, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33791954

RESUMO

As part of the phytoplankton of marine and freshwater environments around the world, cyanobacteria interact with viruses (cyanophages) that affect their abundance and diversity. Investigations focusing on cyanophages co-occurring with freshwater cyanobacteria are scarce, particularly in Brazil. The aim of this study was to assess the diversity of cyanophages associated with a Microcystis-dominated cyanobacterial bloom in a tropical reservoir. Samples were processed as viral fractions of water and cellular fractions, and temporal fluctuations in the abundance of Ma-LMM01-type cyanophages and their Microcystis hosts were determined by qPCR. We applied shotgun metagenomics to obtain a wider characterization of the cyanophage community. During the study period, Microcystis gene copies were quantified in all cellular fractions, and the copy number of the Ma-LMM01 phage gene tended to increase with host abundance. Metagenomic analysis demonstrated that Caudovirales was the major viral order associated with the cyanophage families Myoviridae (34-88%), Podoviridae (3-42%), and Siphoviridae (6-23%). The metagenomic analysis results confirmed the presence of Microcystis cyanophages in both viral and cellular fractions and demonstrated a high relative abundance of picocyanobacteria-related viruses and Prochlorococcus (36-52%) and Synechococcus (37-50%) phages. For other main cyanobacterial genera, no related cyanophages were identified, which was probably due to the scarce representation of cyanophage sequences in databanks. Thus, the studied reservoir hosted a diverse cyanophage community with a remarkable contribution of phages related to picoplanktonic cyanobacteria. These results provide insights that motivate future sequencing efforts to assess cyanophage diversity and recover complete genomes.


Assuntos
Bacteriófagos/isolamento & purificação , Biodiversidade , Cianobactérias/virologia , Água Doce/virologia , Bacteriófagos/classificação , Bacteriófagos/genética , Brasil , Cianobactérias/classificação , Cianobactérias/genética , Cianobactérias/crescimento & desenvolvimento , Água Doce/microbiologia , Genoma Viral , Microcystis/genética , Microcystis/crescimento & desenvolvimento , Microcystis/virologia , Filogenia , Recursos Hídricos
18.
PLoS One ; 16(4): e0250604, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33901250

RESUMO

While primary productivity in the oligotrophic North Pacific Subtropical Gyre (NPSG) is changing, the micro-size plankton community has not been evaluated in the last 4 decades, prompting a re-evaluation. We collected samples over three years (2016-2018) from depths of 10 to 200 m (n = 127), and the micro-size plankton were identified and counted to understand the heterogeneity of micro-size plankton community structure. The assemblages were consistent to the those of 4 decades ago. Dinophyceae (dinoflagellates) were the most numerically abundant, followed by Cryptophyceae and Bacillariophyceae (diatoms). The other micro-size plankton classes (Cyanophyceae, Haptophyceae, Dictyochophyceae, Euglenophyceae, and Prasinophyceae) were not always detected, whereas only Trichodesmium spp. was counted in the Cyanophyceae. Other unidentified autotrophic and heterotrophic flagellates were also significantly present, and their numeric abundance was higher than or at the same level as was that of the Dinophyceae. In the Dinophyceae, Gymnodiniaceae and Peridiniales were abundant. The chlorophyll a concentration and these class-level assemblages suggested micro-size plankton is not a major primary producer in this area. We applied generalized additive models (GAMs) and principal coordination analyses (PCoAs) to evaluate the habitats of every plankton group and the heterogeneity of the assemblages. The GAMs suggested that every classified plankton abundance showed a similar response to salinity, and we observed differences in habitats in terms of temperature and nitrate concentrations. Based on the PCoAs, we observed unique communities at the 200 m depth layer compared with those at the other sampling layers. The site scores of PCoAs indicated that the micro-size plankton assemblages are most heterogeneous at the 10 m depth layer. At such depth, diazotrophic Cyanophyceae (Trichodesmium spp.) are abundant, particularly in less-saline water. Therefore, nitrogen fixation may contribute to the heterogeneity in the abundance and assemblages in the western NPSG.


Assuntos
Diatomáceas/crescimento & desenvolvimento , Dinoflagelados/crescimento & desenvolvimento , Ecossistema , Clorofila A/metabolismo , Cianobactérias/crescimento & desenvolvimento , Cianobactérias/metabolismo , Diatomáceas/metabolismo , Dinoflagelados/metabolismo , Nitratos/química , Nitratos/metabolismo , Fixação de Nitrogênio , Oceano Pacífico , Análise de Componente Principal , Salinidade , Temperatura
19.
Int J Mol Sci ; 22(8)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924720

RESUMO

Gloeobacter violaceus is a cyanobacteria species with a lack of thylakoids, while photosynthetic antennas, i.e., phycobilisomes (PBSs), photosystem II (PSII), and I (PSI), are located in the cytoplasmic membrane. We verified the hypothesis that blue-red (BR) light supplemented with a far-red (FR), ultraviolet A (UVA), and green (G) light can affect the photosynthetic electron transport chain in PSII and explain the differences in the growth of the G. violaceus culture. The cyanobacteria were cultured under different light conditions. The largest increase in G. violaceus biomass was observed only under BR + FR and BR + G light. Moreover, the shape of the G. violaceus cells was modified by the spectrum with the addition of G light. Furthermore, it was found that both the spectral composition of light and age of the cyanobacterial culture affect the different content of phycobiliproteins in the photosynthetic antennas (PBS). Most likely, in cells grown under light conditions with the addition of FR and G light, the average antenna size increased due to the inactivation of some reaction centers in PSII. Moreover, the role of PSI and gloeorhodopsin as supplementary sources of metabolic energy in the G. violaceus growth is discussed.


Assuntos
Cianobactérias/metabolismo , Cianobactérias/efeitos da radiação , Luz , Complexo de Proteína do Fotossistema II/metabolismo , Cianobactérias/citologia , Cianobactérias/crescimento & desenvolvimento , Fluorescência , Modelos Biológicos , Fotossíntese/efeitos da radiação , Pigmentos Biológicos/metabolismo , Análise de Componente Principal
20.
Science ; 371(6536)2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33766860

RESUMO

Vacuolar myelinopathy is a fatal neurological disease that was initially discovered during a mysterious mass mortality of bald eagles in Arkansas in the United States. The cause of this wildlife disease has eluded scientists for decades while its occurrence has continued to spread throughout freshwater reservoirs in the southeastern United States. Recent studies have demonstrated that vacuolar myelinopathy is induced by consumption of the epiphytic cyanobacterial species Aetokthonos hydrillicola growing on aquatic vegetation, primarily the invasive Hydrilla verticillata Here, we describe the identification, biosynthetic gene cluster, and biological activity of aetokthonotoxin, a pentabrominated biindole alkaloid that is produced by the cyanobacterium A. hydrillicola We identify this cyanobacterial neurotoxin as the causal agent of vacuolar myelinopathy and discuss environmental factors-especially bromide availability-that promote toxin production.


Assuntos
Toxinas Bacterianas/toxicidade , Cianobactérias , Doenças Desmielinizantes/veterinária , Águias , Alcaloides Indólicos/toxicidade , Neurotoxinas/toxicidade , Animais , Toxinas Bacterianas/biossíntese , Toxinas Bacterianas/química , Toxinas Bacterianas/isolamento & purificação , Doenças das Aves/induzido quimicamente , Brometos/metabolismo , Bromo/análise , Caenorhabditis elegans/efeitos dos fármacos , Galinhas , Cianobactérias/genética , Cianobactérias/crescimento & desenvolvimento , Cianobactérias/metabolismo , Doenças Desmielinizantes/induzido quimicamente , Genes Bacterianos , Hydrocharitaceae/metabolismo , Hydrocharitaceae/microbiologia , Alcaloides Indólicos/química , Alcaloides Indólicos/isolamento & purificação , Dose Letal Mediana , Família Multigênica , Neurotoxinas/biossíntese , Neurotoxinas/química , Neurotoxinas/isolamento & purificação , Sudeste dos Estados Unidos , Triptofano/metabolismo , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...